PROOF USING LOGIC

Pearson Edexcel - Tuesday 21 May 2019 - Paper 1 (Non-Calculator) Higher Tier

1.

13	Proof shown	C2	for complete argument,	
		1.75 (1.15)	eg $n(n-1)$ is the product of two consecutive integers and must be even	
			as either n or $n-1$ must be even	
			Control of the State of the Sta	
			or gives correct reasoning for n odd and n even	
			n odd: odd \times odd = odd and odd - odd = even	
			<i>n</i> even: even \times even = even and even – even = even	
			or n odd: $(2n+1)^2 - (2n+1) = 4n^2 + 2n = 2(2n^2 + n)$	
			n even: $(2n)^2 - (2n) = 4n^2 - 2n = 2(2n^2 - n)$	
		(C1	for factorising, eg $n(n-1)$	
			OR gives correct reasoning for n odd or n even	
			OR gives a partial explanation using n odd and n even, eg odd ² – odd = even and even ² – even = even)	

Pearson Edexcel - Thursday 8 November 2018 - Paper 2 (Calculator) Higher Tier

2.

2	1	proof	C1	uses cyclic quad eg if $CAB = x$ then $CRO = 180 - x$ (Opposite angles of a cyclic quadrilateral add up to 180° .)	Underlined words need to be shown; reasons need to be linked to their method; any reasons not linked do not credit.
			C1	establishes relationship outside a circle eg $ORB = x$ (Angles on a straight line add up to 180)	Correct method can be implied from angles on the diagram if no ambiguity or contradiction.
			C1	uses properties of a circle eg $RO = OB$ (both radii) so $ABC = x$ (Base angles of an <u>isosceles triangle</u> are equal.)	
			C1	Complete proof and conclusion	Full reasons given without any redundant reasons and correct reasoning throughout.

Pearson Edexcel - Thursday 24 May 2018 - Paper 1 (Non-Calculator) Higher Tier

3.

12	Statement supported by	Bl	writing a general expression for an odd number eg $2n+1$	Could be $2n - 1$, $2n + 3$, etc
	algebra	M1	(dep) for expanding ("odd number")² with at least 3 out of 4 correct terms	Note that $4n^2 + 4n + 2$ or $2n^2 + 4n + 1$ in expansion of $(2n + 1)^2$ is to be regarded as 3 correct terms
		A1	for correct simplified expansion, eg $4n^2 + 4n + 1$	
		C1	(dep A1) for a concluding statement eg $4(n^2 + n) + 1$ (is one more than a multiple of 4)	

Pearson Edexcel - Thursday 7 June 2018 - Paper 2 (Calculator) Higher Tier

- 6	•				
	13 (a)	Shown	M1	for finding one missing angle	Could be shown on the diagram or in
				eg BDE = y or ODE = 90 or ODF = 90 or DBO = x	working
				or $BCD = 180 - y$ or (reflex) $BOD = 2y$	
			Al	for a complete correct method leading to $y - x = 90$	
			C1	(dep on A1) for all correct circle theorems given appropriate for their working	
				eg The tangent to a circle is perpendicular (90°) to the radius (diameter)	
				Alternate segment theorem	
				OR	
				Angle at the centre is twice the angle at the circumference Opposite angles in a cyclic quadrilateral sum to 180°	
	(b)	Explanation	C1	for explanation eg No as y must be less than 180 as it is an angle in a triangle	

Pearson Edexcel - Monday 6 November 2017 - Paper 2 (Calculator) Higher Tier

5.

19	Proof (supported)	M1	for a method to find coordinates of $M(-1, -1)$ or $N(3, 1)$
		M1	for method to find gradient of MN or PR or for method to find column vector for MN or PR or for differences of x coordinates and differences of y coordinates for MN or PR
		A1	for gradients of MN and PR, ie ½ oe or for column vectors of MN and PR, $\overline{MN}' = \binom{4}{2}$ and $\overline{PR}' = \binom{8}{4}$ or for differences of x coordinates and of y coordinates for MN and PR
		C1	for conclusion from reasoning and correct working

Pearson Edexcel - Thursday 25 May 2017 - Paper 1 (Non-Calculator) Higher Tier

6.

21	 	C1	states (angle) $ABC = $ (angle) BCD
		C1	states 2^{nd} link $AB = CD$
		C 1	states 3^{rd} link with reason: $BC = BC$ (common)
		C1	concludes proof by stating (triangle) $ABC \equiv$ (triangle) DCB with reason SAS and $AC = BD$

Pearson Edexcel - Thursday 8 June 2017 - Paper 2 (Calculator) Higher Tier

7.

15	Proof	CI	for identifying one pair of equal angles with a correct reason, e.g. (angle) BAE = (angle) CDE; angles in the same segment are equal or angles at the circumference subtended on the same arc are equal or for identifying two pairs of equal angles with no correct reasons given (angles must be within the appropriate triangles)
		Cl	for identifying a second pair of equal angles with a correct reason, e.g. (angle) $AEB = (angle) DEC$; opposite angles or vertically opposite angles are equal or for identifying the three pairs of equal angles with no correct reasons given
		C1	for stating the three pairs of equal angles of the two triangles e.g. $ABE = DCE$, $BEA = CED$, $EAB = EDC$ with fully correct reasons

Pearson Edexcel - Tuesday 13 June 2017 - Paper 3 (Calculator) Higher Tier

8.

5	Shows polygon is	M1	for a complete method to find the interior or exterior angle of the dodecagon
3			
	a hexagon		eg $180 - \frac{360}{12}$, $\frac{180}{12}(12 - 2)$ oe (= 150), $360 \div 12$ (=30)
			12 , 12 (12 2) (13 (13))
		M1	for a complete method to find the interior angle of polygon P
			eg at B or C: $360 - 150'' - 90$ (= 120) or $30'' + 90$ (= 120) or for a complete method
			to find the interior or exterior angle of the hexagon
			eg $180 - \frac{360}{6}$, $\frac{180}{6}$ (6 - 2) oe (= 120), $360 \div 6$ (= 60)
			$eg 180 - {6}, {6} (6 - 2) 0e (= 120), 360 + 6 (= 60)$
		A1	for 30 and 120 or 30 and 60 or 120 and 150 or 60 and 150
		C1	complete solution, fully supported by accurate figures

Pearson Edexcel - Specimen Papers Set 2 - Paper 2 (Calculator) Higher Tier

20	$\angle TSU = 360 \div 5 (=72)$	proof	M1	for method to find interior or exterior angle of
	Exterior angles of a polygon			regular pentagon
	add up to 360°			
	$\angle QRO = \angle OTP = 90$		M1	for using angle between tangent and radius
	The tangent to a circle is			
	perpendicular (90°) to the			
	radius (diameter)			
	$\angle ROT = 540 - 2 \times 90 - 2 \times 100 \times 144$		M1	for method to find angle <i>ROT</i>
	108 (= 144)		C1	Constitution of the Control of DIFF Control
	$\geq RUT = 144 \div 2 (= 72)$		C1	for method to find angle <i>RUT</i> with reason
	The angle at the centre of a			
	circle is twice the angle at the circumference			
			C1	for deduction that $ST = UT$ with reasons
	Base angles of an isosceles			for deduction that $SI - UI$ with reasons
	triangle are equal			

Pearson Edexcel - Wednesday 4 November 2015 - Paper 1 (Non-Calculator) Higher Tier

10.

*20		Proof	5	M1 for finding one other vector expressed as a and/or b
				M1 for method to find one of \overrightarrow{DM} , \overrightarrow{MA} or \overrightarrow{DA}
				eg $\overrightarrow{DM} = -\mathbf{b} + \frac{1}{2}(3\mathbf{b} + \mathbf{a})$ oe, $\overrightarrow{MA} = \frac{1}{2}(3\mathbf{b} + \mathbf{a}) + \mathbf{a}$ oe
				or $\overline{DA} = 2\mathbf{b} + 2\mathbf{a}$ oe
				M1 for method to find two of \overrightarrow{DM} , \overrightarrow{MA} or \overrightarrow{DA}
				A1 for two of $\overrightarrow{DM} = \frac{1}{2} (\mathbf{a} + \mathbf{b}), \ \overrightarrow{MA} = 1.5(\mathbf{a} + \mathbf{b}), \ \overrightarrow{DA} = 2(\mathbf{a} + \mathbf{b})$ ie
				simplified but oe
				C1 (dep on working shown) for conclusion relating to correct working

Pearson Edexcel - Monday 6 June 2011 - Paper 3 (Non-Calculator) Higher Tier

11.

17	PBC = 90 - PAC	Proof	3	M1 for $PBC = 90 - PAC$ or $PAC = 90 - PBC$ or
				ACP = 90 - PCB
	BCP = 90 - (90 - PAC)			M1 for $BCP = 90 - (90 - PAC)$
				or $PAC = 90 - (90 - BCP)$ oe
				A1 for $PAC = PCB$ and $PCA = PBC$ and $APC =$
				CPB
				B1 SC if M0 awarded for $APC = BPC = 90^{\circ}$ or
				statement matching the 3 equal sets of angles
				PAC = PCB and $PCA = PBC$ and $APC = CPB$

OCR GSCE – Sample Papers – Paper 5 (Non - Calculator) Higher Tier

16	e.g. When $x = 0.1$ $(2x)^2 = 0.04$ 2x = 0.2 So $(2x)^2 < 2x$ which contradicts Bethany's statement So it is not always true	3 2 AO2.4a 1 AO2.5a	M1 for attempting to demonstrate that for some value of x in range $0 < x < \frac{1}{2}$ it is not true A1 for complete working A1 for explanation or M1 for attempt including squaring bracket A1 for complete solution for either $x < 0$ or $x \ge \frac{1}{2}$
			bracket A1 for complete solution for either $x < 0$ or $x \ge \frac{1}{2}$
			or B1 for a counter example given without working

AQA GSCE – Sample Paper 2 (Calculator) Higher Tier

18(a)	$(n-6)^2$ could be zero (so she is wrong) or The sixth term is 1	B1	oe
18(b)	1	B1	